Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Soft Matter ; 20(2): 315-329, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38073498

ABSTRACT

We present a microstructure-topology-based approach for designing macroscopic, heterogeneous soft materials that exhibit outstanding mechanical resilience and energy dissipation. We investigate a variety of geometric configurations of resilient yet dissipative heterogeneous elasto-plastomeric materials that possess long-range order whose microstructural features are inspired by crystalline metals and block copolymers. We combine experiments and numerical simulations on 3D-printed prototypes to study the extreme mechanics of these heterogeneous soft materials under cyclic deformation conditions up to an extreme strain of >200% with strain rates ranging from quasi-static (5.0 × 10-3 s-1) to high levels of >6.0 × 101 s-1. Moreover, we investigate the complexity of elastic and inelastic "unloading" mechanisms crucial for the understanding of shape recovery and energy dissipation in extreme loading situations. Furthermore, we propose a simple but physically intuitive approach for designing microstructures that exhibit a nearly isotropic behavior in both elasticity and inelasticity across different crystallographic orientations from small to large strains. Overall, our study sets a significant step toward the development of sustainable, heterogeneous soft material architectures at macroscopic scales that can withstand harsh mechanical environments.

2.
Materials (Basel) ; 13(17)2020 Aug 31.
Article in English | MEDLINE | ID: mdl-32878337

ABSTRACT

Three-dimensional (3D) printing continuous carbon fiber-reinforced polylactic acid (PLA) composites offer excellent tensile mechanical properties. The present study aimed to research the effect of process parameters on the tensile mechanical properties of 3D printing composite specimens through a series of mechanical experiments. The main printing parameters, including layer height, extrusion width, printing temperature, and printing speed are changed to manufacture specimens based on the modified fused filament fabrication 3D printer, and the tensile mechanical properties of 3D printing continuous carbon fiber-reinforced PLA composites are presented. By comparing the outcomes of experiments, the results show that relative fiber content has a significant impact on mechanical properties and the ratio of carbon fibers in composites is influenced by layer height and extrusion width. The tensile mechanical properties of continuous carbon fiber-reinforced composites gradually decrease with an increase of layer height and extrusion width. In addition, printing temperature and speed also affect the fiber matrix interface, i.e., tensile mechanical properties increase as the printing temperature rises, while the tensile mechanical properties decrease when the printing speed increases. Furthermore, the strengthening mechanism on the tensile mechanical properties is that external loads subjected to the components can be transferred to the carbon fibers through the fiber-matrix interface. Additionally, SEM images suggest that the main weakness of continuous carbon fiber-reinforced 3D printing composites exists in the fiber-matrix interface, and the main failure is the pull-out of the fiber caused by the interface destruction.

3.
Phys Rev Lett ; 124(15): 158002, 2020 Apr 17.
Article in English | MEDLINE | ID: mdl-32357065

ABSTRACT

Elastic instabilities can trigger dramatic microstructure transformations giving rise to unusual behavior in soft matter. Motivated by this phenomenon, we study instability-induced pattern formations in soft magnetoactive elastomer (MAE) composites deforming in the presence of a magnetic field. We show that identical MAE composites with periodically distributed particles can switch to a variety of new patterns with different periodicity upon developments of instabilities. The newly formed patterns and postbuckling behavior of the MAEs are dictated by the magnitude of the applied magnetic field. We identify the particular levels of magnetic fields that give rise to strictly doubled or multiplied periodicity upon the onset of instabilities in the periodic particulate soft MAE. Thus, the predicted phenomenon can be potentially used for designing new reconfigurable soft materials with tunable material microstructures remotely controlled by a magnetic field.

4.
Philos Trans A Math Phys Eng Sci ; 378(2162): 20190107, 2020 Jan 10.
Article in English | MEDLINE | ID: mdl-31760907

ABSTRACT

The paper describes a fault-tolerant design of a special two-dimensional beam lattice. The morphology of such lattices was suggested in the theoretical papers (Cherkaev and Ryvkin 2019 Arch. Appl. Mech. 89, 485-501; Cherkaev and Ryvkin 2019 Arch. Appl. Mech. 89, 503-519), where its superior properties were found numerically. The proposed design consists of beam elements with two different thicknesses; the lattice is macro-isotropic and stretch dominated. Here, we experimentally verify the fault-tolerant properties of these lattices. The specimens were three-dimensional-printed from the VeroWhite elastoplastic material. The lattice is subjected to uniaxial tensile loading. Due to its morphology, the failed beams are evenly distributed in the lattice at the initial stage of damage; at this stage, the material remains intact, preserves its bearing ability, and supports relatively high strains before the final failure. At the initial phase of damage, the thinner beams buckle; then another group of separated thin beams plastically yield and rupture. The fatal macro-crack propagates after the distributed damage reaches a critical level. This initial distributed damage stage allows for a better energy absorption rate before the catastrophic failure of the structure. The experimental results are supported by simulations which confirm that the proposed fault-tolerant material possesses excellent energy absorption properties thanks to the distributed damage stage phenomenon. This article is part of the theme issue 'Modelling of dynamic phenomena and localization in structured media (part 2)'.

5.
Materials (Basel) ; 12(5)2019 Mar 06.
Article in English | MEDLINE | ID: mdl-30845650

ABSTRACT

Polymer-based three-dimensional (3D) printing-such as the UV-assisted layer-by-layer polymerization technique-enables fabrication of deformable microstructured materials with pre-designed properties. However, the properties of such materials require careful characterization. Thus, for example, in the polymerization process, a new interphase zone is formed at the boundary between two constituents. This article presents a study of the interphasial transition zone effect on the elastic instability phenomenon in hyperelastic layered composites. In this study, three different types of the shear modulus distribution through the thickness of the interphasial layer were considered. Numerical Bloch-Floquet analysis was employed, superimposed on finite deformations to detect the onset of instabilities and the associated critical wavelength. Significant changes in the buckling behavior of the composites were observed because of the existence of the interphasial inhomogeneous layers. Interphase properties influence the onset of instabilities and the buckling patterns. Numerical simulations showed that interlayer inhomogeneity may result in higher stability of composites with respect to classical layup constructions of identical shear stiffness. Moreover, we found that the critical wavelength of the buckling mode can be regulated by the inhomogeneous interphase properties. Finally, a qualitative illustration of the effect is presented for 3D-printed deformable composites with varying thickness of the stiff phase.

6.
Adv Mater ; 31(14): e1807309, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30762902

ABSTRACT

Experimental observations of domain formations and pattern transitions in soft particulate composites under large deformations are reported herein. The system of stiff inclusions periodically distributed in a soft elastomeric matrix experiences dramatic microstructure changes upon the development of elastic instabilities. In the experiments, the formation of microstructures with antisymmetric domains and their geometrically tailored evolution into a variety of patterns of cooperative particle rearrangements are observed. Through experimental and numerical analyses, it is shown that these patterns can be tailored by tuning the initial microstructural periodicity and concentration of the inclusions. Thus, these fully determined new patterns can be achieved by fine tuning of the initial microstructure.

7.
Sci Rep ; 8(1): 11834, 2018 Aug 07.
Article in English | MEDLINE | ID: mdl-30087416

ABSTRACT

Instability-induced pattern transformations of the architectured multi-phase soft metamaterial under bi-axial compression were explored. The soft metamaterial is composed of two phases: a soft matrix and a reinforcing hexagonal network embedded in the matrix. Equi-biaxial loading is found to induce both micro- and macro- instabilities in the networked architecture. Two types of instability patterns were observed, dependent upon the architecture geometry and the material combination. The critical strain for triggering instability and the two resulting types of patterns was derived, and a theoretical criterion for the transition between the two patterns was determined. Type I patterns retain the original periodicity of the architecture but wrinkles the network walls whereas Type II patterns transform the overall periodicity of the architecture while bending the network walls. Elastic wave propagation analysis was performed for the two distinct patterns under both stressed and stress-free conditions: a change in band gaps is found for both instability-induced pattern transformations, but differs for each type due to their dramatic difference in structure transformation (i.e. Type I wall wrinkling vs. Type II periodicity switching). The distinguished mechanical behavior and the rich properties of this category of multi-phase soft metamaterial can be used to design new smart materials with switchable functionalities controllable by deformation.

8.
Soft Matter ; 14(30): 6171-6180, 2018 Aug 01.
Article in English | MEDLINE | ID: mdl-30022182

ABSTRACT

We investigate the instability-induced pattern transformations in 3D-printed soft composites consisting of stiff inclusions and voids periodically distributed in a soft matrix. These soft auxetic composites are prone to elastic instabilities giving rise to negative Poisson's ratio (NPR) behavior. Upon reaching the instability point, the composite microstructure rearranges into a new morphology attaining an NPR regime. Remarkably, identical composites can morph into distinct patterns depending on the loading direction. These fully determined instability-induced distinct patterns are characterized by significantly different NPR behaviors, thus, giving rise to enhanced tunability of the composite properties. Finally, we illustrate a potential application of these reversible pattern transformations as tunable acoustic-elastic metamaterials capable of selectively filtering low frequency ranges controlled by deformation.

9.
Polymers (Basel) ; 10(8)2018 Aug 01.
Article in English | MEDLINE | ID: mdl-30960772

ABSTRACT

The following is a study of the performance of soft cable-driven polymer actuators produced by multimaterial 3D printing. We demonstrate that the mechanical response of the polymer actuator with an embedded cable can be flexibly tuned through the targeted selection of actuator architecture. Various strategies, such as the addition of discrete or periodic stiff inserts, the sectioning of the actuator, or the shifting of the cable channel are employed to demonstrate ways to achieve more controllable deformed shape during weight lifting or reduce the required actuation force. To illustrate these concepts, we design and manufacture a prototype of the soft polymer gripper, which is capable of manipulating small, delicate objects. The explored strategies can be utilized in other types of soft actuators, employing, for instance, actuation by means of electroactive polymers.

10.
Soft Matter ; 12(16): 3677-82, 2016 Apr 20.
Article in English | MEDLINE | ID: mdl-27053334

ABSTRACT

In this study, we combine the elastic instability and non-linear rate-dependent phenomena to achieve microstructure tunability in soft layered materials. In these soft composites, elastic instabilities give rise to formation of wrinkles or wavy patterns. In elastic materials, the critical wavelength as well as amplitude at a particular strain level are exclusively defined by the composite microstructure and contrast in the elastic moduli of the phases. Here, we propose to use rate-dependent soft constituents to increase the admissible range of tunable microstructures. Through the experiments on 3D printed soft laminates, and through the numerical simulation of the visco-hyperelastic composites, we demonstrate the existence of various instability-induced wavy patterns corresponding to the identical deformed state of the identical soft composites.

11.
Soft Matter ; 11(13): 2547-54, 2015 Apr 07.
Article in English | MEDLINE | ID: mdl-25715866

ABSTRACT

Inspired by the imbricated scale-tissue flexible armor of elasmoid fish, we design hybrid stiff plate/soft matrix material architectures and reveal their ability to provide protection against penetration while preserving flexibility. Indentation and bending tests on bio-inspired 3D-printed prototype materials show that both protection and flexibility are highly tunable by geometrical parameters of the microstructure (plate inclination angle and volume fraction). We show that penetration resistance can be amplified by a factor of 40, while flexibility decreases in less than 5 times. Different deformation resistance mechanisms are found to govern flexibility (inter-plate matrix shear) versus penetration resistance (localized plate bending) for this microstructural architecture which, in turn, enables separation of these functional requirements in the material design. These experiments identify the tradeoffs between these typically conflicting properties as well as the ability to design the most protective material architecture for a required flexibility, providing new design guidelines for enhanced flexible armor systems.


Subject(s)
Biomimetics/methods , Mechanical Phenomena , Materials Testing
12.
Phys Rev Lett ; 112(3): 034301, 2014 Jan 24.
Article in English | MEDLINE | ID: mdl-24484141

ABSTRACT

The ability to control wave propagation in highly deformable layered media with elastic instability-induced wrinkling of interfacial layers is presented. The onset of a wrinkling instability in initially straight interfacial layers occurs when a critical compressive strain is achieved. Further compression beyond the critical strain leads to an increase in the wrinkle amplitude of the interfacial layer. This, in turn, gives rise to the formation of a system of periodic scatterers, which reflect and interfere with wave propagation. We demonstrate that the topology of wrinkling interfacial layers can be controlled by deformation and used to produce band gaps in wave propagation and, hence, to selectively filter frequencies. Remarkably, the mechanism of frequency filtering is effective even for composites with similar or identical densities, such as polymer-polymer composites. Since the microstructure change is reversible, the mechanism can be used for tuning and controlling wave propagation by deformation.

SELECTION OF CITATIONS
SEARCH DETAIL
...